

Aluminum electrolytic capacitors

Single-ended capacitors

Series/Type: B41868 Date: December 2006

 \odot EPCOS AG 2007. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Single-ended capacitors

Very high temperature capability - 150 °C

Long-life grade capacitors

Applications

- Automotive electronics
- Industrial electronics

Features

- High reliability and long useful life
- High ripple current capability
- Extended temperature range up to 150 °C

Construction

- Radial leads
- Charge-discharge proof, polar
- Aluminum case with insulating sleeve
- Minus pole marking on the insulating sleeve
- Stand-off rubber seal
- Case with safety vent

Delivery mode

Terminal configurations and packing:

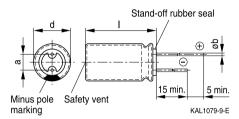
- Bulk
- Taped, Ammo pack
- Cut
- Kinked
- PAPR (protection against polarity reversal): crimped leads, J leads, bent leads

Refer to chapter "Single-ended capacitors – Taping, packing and lead configurations" for further details and ordering example.

Very high temperature capability - 150 °C

Specifications and characteristics in brief

10 50	V DC					
1.15 · V	R					
47 56	00 µF					
±20% ≙	Μ					
	For capacitance higher than 1000 μF add 0.02 for every increase of 1000 $\mu F.$					
V _R (V DC)				25	35	50
tan δ (m	ax.)	0.20	0.16	0.14	0.12	0.10
I _{leak} =0.	$I_{\text{leak}} = 0.01 \mu\text{A} \cdot \left(\frac{\text{C}_{\text{R}}}{\mu\text{F}} \cdot \frac{\text{V}_{\text{R}}}{\text{V}}\right)$					
Diamete	er (mm)	≤ 12.5	16	18		
ESL (nH	I)	20	26	34		
> 1000 k	ı					
∆C/C	≤±45%	of initial va	alue			
tan δ	≤ 3 time	es initial sp	ecified limi	t		
I _{leak}	\leq initial	specified li	mit			
1000 h						
∆C/C	≤±30%	of initial va	alue			
tan δ	\leq 2 time	es initial sp	ecified limi	t		
I _{leak}	\leq initial	specified li	mit			
To IEC 6	60068-2-6	6, test Fc:				
Displace	ement am	plitude 0.7	5 mm, frec	quency ran	ge 10 :	2000 Hz,
accelera	tion max	. 20 <i>g</i> , dura	ation 3×2	h.		
Capacito	or rigidly o	clamped by	the alumi	num case.		
To IEC 6	To IEC 60068-1:					
55/150/5	55/150/56 (-55 °C/+150 °C/56 days damp heat test)					
AEC-Q2	00, IEC 6	60384-4				
	1.15 · V47 56±20% △For capa1000 μF V_R (V DCtan δ (m) $I_{leak} = 0.1$ DiameteESL (nH)> 1000 hΔC/Ctan δ I_{leak} 1000 hΔC/Ctan δ I_{leak} 1000 hΔC/Ctan δ I_{leak} 1000 hΔC/Ctan δ I_{leak} To IEC €DisplaceacceleraCapacitoTo IEC €55/150/5	$\begin{array}{c} 1000 \ \mu\text{F}. \\ \hline V_{\text{R}} (\text{V DC}) \\ \hline tan \ \delta \ (\text{max.}) \\ \hline I_{\text{leak}} = 0.01 \ \mu\text{A} \cdot \left(\frac{1}{2}\right) \\ \hline Diameter \ (\text{mm}) \\ \hline \text{ESL} \ (\text{nH}) \\ \hline > 1000 \ \text{h} \\ \Delta C/C &\leq \pm 45\% \\ tan \ \delta &\leq 3 \ \text{time} \\ I_{\text{leak}} &\leq \text{initial} \\ \hline 1000 \ \text{h} \\ \Delta C/C &\leq \pm 30\% \\ tan \ \delta &\leq 2 \ \text{time} \\ I_{\text{leak}} &\leq \text{initial} \\ \hline 1000 \ \text{h} \\ \Delta C/C &\leq \pm 30\% \\ tan \ \delta &\leq 2 \ \text{time} \\ I_{\text{leak}} &\leq \text{initial} \\ \hline To \ \text{IEC} \ 60068-2-0 \\ \hline \text{Displacement am} \\ acceleration \ max \\ Capacitor \ rigidly \ 0 \\ \hline To \ \text{IEC} \ 60068-1: \\ 55/150/56 \ (-55^\circ) \end{array}$	$\begin{array}{c c} 1.15 \cdot V_{\text{R}} \\ \hline \hline 1.15 \cdot V_{\text{R}} \\ \hline \hline 47 \dots 5600 \ \mu\text{F} \\ \hline \pm 20\% \triangleq M \\ \hline \hline For capacitance higher than \\ 1000 \ \mu\text{F}. \\ \hline V_{\text{R}} (V \ DC) & 10 \\ \hline tan \ \delta \ (max.) & 0.20 \\ \hline I_{\text{leak}} = 0.01 \ \mu\text{A} \cdot \left(\frac{C_{\text{R}}}{\mu\text{F}} \cdot \frac{V_{\text{R}}}{V}\right) \\ \hline Diameter \ (mm) & \leq 12.5 \\ \hline \text{ESL} \ (n\text{H}) & 20 \\ \hline \end{array}$ $\begin{array}{c} > 1000 \ h \\ \Delta C/C & \leq \pm 45\% \ of \ initial \ vatar \ \delta & \leq 3 \ times \ initial \ specified \ \text{li} \\ \hline 1000 \ h \\ \Delta C/C & \leq \pm 30\% \ of \ initial \ specified \ \text{li} \\ \hline 1000 \ h \\ \Delta C/C & \leq \pm 30\% \ of \ initial \ specified \ \text{li} \\ \hline 1000 \ h \\ \Delta C/C & \leq \pm 30\% \ of \ initial \ specified \ \text{li} \\ \hline 1000 \ h \\ \Delta C/C & \leq \pm 30\% \ of \ initial \ specified \ \text{li} \\ \hline To \ IEC \ 60068-2-6, \ test \ \text{Fc:} \\ Displacement \ amplitude \ 0.73 \\ acceleration \ max. \ 20 \ g, \ durac \\ Capacitor \ rigidly \ clamped \ by \\ To \ IEC \ 60068-1: \\ \end{array}$	$1.15 \cdot V_R$ $47 \dots 5600 \ \mu F$ $\pm 20\% \triangleq M$ For capacitance higher than $1000 \ \mu F$. $V_R (V DC)$ 10 16 $\tan \delta (max.)$ 0.20 0.16 $I_{leak} = 0.01 \ \mu A \cdot \left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right)$ Diameter (mm) ≤ 12.5 16 ESL (nH) 20 26 > 1000 h $\Delta C/C \leq \pm 45\%$ of initial value $\tan \delta \leq 3$ times initial specified limit $1000 h$ $\Delta C/C \leq \pm 45\%$ of initial value $\tan \delta \leq 3$ times initial specified limit $1000 h$ $\Delta C/C \leq \pm 30\%$ of initial value $\tan \delta \leq 2$ times initial specified limit $1000 h$ $\Delta C/C \leq \pm 30\%$ of initial value $\tan \delta \leq 2$ times initial specified limitTo IEC 60068-2-6, test Fc:Displacement amplitude 0.75 mm, freeacceleration max. 20 g, duration 3×2 Capacitor rigidly clamped by the alumiTo IEC 60068-1: $55/150/56$ ($-55 \ C/+150 \ C/56$ days d	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.15 · V _R 47 5600 μF ±20% △ M For capacitance higher than 1000 μF add 0.02 for every in 1000 μF. V _R (V DC) 10 16 25 35 tan δ (max.) 0.20 0.16 0.14 0.12 I _{leak} =0.01μA · $\left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right)$ Diameter (mm) ≤ 12.5 16 18 ESL (nH) 20 26 34 > 1000 h ΔC/C ≤ ±45% of initial value tan δ ≤ 3 times initial specified limit I _{leak} ≤ initial specified limit 1000 h ΔC/C ≤ ±30% of initial value tan δ ≤ 2 times initial specified limit Initial specified limit Initial specified limit Initial specified limit 1000 h ΔC/C ≤ ±30% of initial value tan δ ≤ 2 times initial specified limit Initial specified limit I _{leak} ≤ initial specified limit To IEC 60068-2-6, test Fc: Displacement amplitude 0.75 mm, frequency range 10 2 acceleration max. 20 g, duration 3 × 2 h. Capacitor rigidly clamped by the aluminum case. To IEC 60068-1: 55/150/56 (-55 °C/+150 °C/56 days damp heat test) 55/150/56 (-55 °C/+150 °C/56 days damp heat test)



Very high temperature capability - 150 °C

Dimensional drawing

With stand-off rubber seal

Diameters (mm): 10, 12.5, 16, 18

Dimensions and weights

Dimensions (mm)			Approx. weight
d +0.5	1	a ±0.5	b	g
10	12.5 +1.0	5.0	0.60 ±0.05	1.6
10	16 +1.0	5.0	0.60 ±0.05	1.9
10	20 +2.0	5.0	0.60 ±0.05	2.6
12.5	20 +2.0	5.0	0.60 ±0.05	3.6
12.5	25 +2.0	5.0	0.60 ±0.05	4.5
16	20 +2.0	7.5	0.80 ±0.05	5.5
16	31.5 +2.0	7.5	0.80 ±0.05	7.8
18	20 +2.0	7.5	0.80 ±0.1	8.0
18	35 +2.0	7.5	0.80 ±0.1	13.0
18	40 +2.0	7.5	0.80 ±0.1	16.0

B41868

Overview of available types

V _R (V DC)	10	16	25	35	50
	Case dimensi	ons d \times l (mm)			
C _R (μF)					
47				10 × 12.5	
100			10 × 12.5	10 × 16	10 × 20
220		10 × 16	10 × 16	10 × 20	12.5 × 20
330	10 ×16	10 × 16	10 × 20	12.5 × 20	12.5 × 25
470	10 × 16	10 × 20	12.5 × 20	12.5 × 25	16 × 31.5 18 × 20
680				18 × 20	
1000	12.5 × 20	12.5 × 25 16 × 20	16 × 31.5 18 × 20	16 × 31.5	18 × 35
1200					18 × 40
1500				18 × 35	
1800				18 × 40	
2200	16 × 31.5 18 × 20	16 × 31.5 18 × 20	18 × 35		
3300	16 × 31.5	18 × 35	18 × 40		
4700	18 × 35	18 × 40			
5600	18 × 40				

Other voltage and capacitance ratings are available upon request.

Very high temperature capability - 150 °C

Technical data and ordering codes

C _R	Case	ESR _{max}	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	I _{AC,max}	Ordering code
120 Hz	dimensions	10 kHz	120 Hz	10 kHz	100 kHz	100 kHz	100 kHz	(composition see
20 °C	d×l	-40 °C	20 °C	20 °C	20 °C	150 °C	125 °C	below)
μF	mm	Ω	Ω	Ω	Ω	mA	mA	,
V _R = 10	V DC							
330	10 × 16	1.825	0.766	0.228	0.208	426	596	B41868W3337M***
470	10 ×16	1.825	0.538	0.228	0.208	426	596	B41868W3477M***
1000	12.5×20	1.134	0.253	0.142	0.130	673	943	B41868W3108M***
2200	16 × 31.5	0.418	0.126	0.052	0.049	1475	2065	B41868W3228M***
2200	18 ×20	0.418	0.126	0.052	0.049	1341	1877	B41868R3228M***
3300	16 × 31.5	0.418	0.090	0.052	0.049	1475	2065	B41868W3338M***
4700	18 ×35	0.331	0.070	0.041	0.039	1861	2605	B41868W3478M***
5600	18 ×40	0.233	0.063	0.029	0.028	2325	3254	B41868W3568M***
$V_{R} = 16$	V DC							
220	10 ×16	1.825	0.919	0.228	0.208	426	596	B41868W4227M***
330	10 ×16	1.825	0.612	0.228	0.208	426	596	B41868W4337M***
470	10 ×20	1.316	0.430	0.164	0.147	552	773	B41868W4477M***
1000	12.5 imes 25	0.738	0.202	0.092	0.085	905	1266	B41868W4108M***
1000	16 ×20	0.763	0.202	0.095	0.088	929	1301	B41868R4108M***
2200	16×31.5	0.418	0.103	0.052	0.049	1475	2065	B41868W4228M***
2200	18 ×20	0.457	0.103	0.057	0.053	1291	1807	B41868R4228M***
3300	18 ×35	0.331	0.077	0.041	0.039	1861	2605	B41868W4338M***
4700	18 ×40	0.233	0.059	0.029	0.028	2325	3254	B41868R4478M***
$V_{R} = 25$	V DC							
100	10 × 12.5	3.099	1.768	0.387	0.349	300	419	B41868W5107M***
220	10 ×16	1.825	0.804	0.228	0.208	426	596	B41868W5227M***
330	10 ×20	1.316	0.536	0.164	0.147	552	773	B41868W5337M***
470	12.5 imes 20	1.134	0.376	0.142	0.130	673	943	B41868W5477M***
1000	16×31.5	0.418	0.177	0.052	0.049	1475	2065	B41868W5108M***
1000	18 ×20	0.457	0.177	0.057	0.053	1291	1807	B41868R5108M***
2200	18 ×35	0.331	0.090	0.041	0.039	1861	2605	B41868W5228M***
3300	18×40	0.233	0.069	0.029	0.028	2325	3254	B41868W5338M***

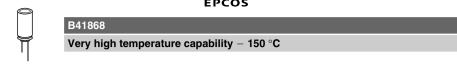
Composition of ordering code

*** = Version

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for $\emptyset \ge 10 \text{ mm}$)
- 002 = for cut leads, bulk (for $\emptyset \ge 10 \text{ mm}$)
- 003 = for crimped leads, blister (for $\emptyset \ge$ 16 mm)
- 004 = for J leads, blister (from $d \times I = 10 \times 12.5$ mm to 18×35 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5 mm (from d \times l = 10 \times 12.5 mm to 12.5 \times 25 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (from d × l = 16 × 20 mm to 16 × 31.5 mm)
- 012 = for bent 90° leads, blister (for \emptyset 16 and 18 mm)

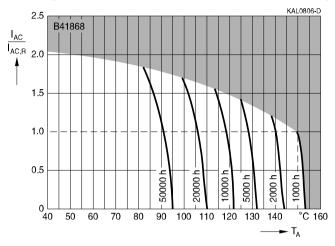
B41868

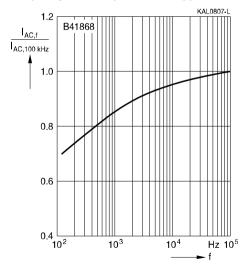
Technical data and ordering codes


C _R (EGD	ECD	ECD	7	1	1	Ordering code
	Case	ESR _{max}	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	AC,max	0
120 Hz (dimensions	10 kHz	120 Hz	10 kHz	100 kHz	100 kHz	100 kHz	(composition see
20 °C (d × I	−40 °C	20 °C	20 °C	20 °C	150 °C	125 °C	below)
μF ι	mm	Ω	Ω	Ω	Ω	mA	mA	
V _R = 35 V	/ DC							
47	10 × 12.5	3.719	3.225	0.465	0.419	300	419	B41868W7476M***
100	10 × 16	1.825	1.516	0.228	0.208	426	596	B41868W7107M***
220	10 ×20	1.316	0.689	0.164	0.147	552	773	B41868W7227M***
330	12.5 × 20	1.134	0.459	0.142	0.130	673	943	B41868W7337M***
470 [·]	12.5 × 25	0.738	0.323	0.092	0.085	905	1266	B41868W7477M***
680 [·]	18 ×20	0.457	0.223	0.057	0.053	1291	1807	B41868W7687M***
1000	16 × 31.5	0.418	0.152	0.052	0.049	1475	2065	B41868W7108M***
1500	18 ×35	0.331	0.101	0.041	0.039	1861	2605	B41868W7158M***
1800	18 ×40	0.233	0.084	0.029	0.028	2325	3254	B41868W7188M***
V _R = 50 V	/ DC							
100	10 ×20	1.316	1.263	0.164	0.147	552	773	B41868W6107M***
220	12.5 × 20	1.134	0.574	0.142	0.130	673	943	B41868W6227M***
330	12.5 × 25	0.738	0.383	0.092	0.085	905	1266	B41868W6337M***
470	16 × 31.5	0.418	0.269	0.052	0.049	1475	2065	B41868W6477M***
470 [·]	18 ×20	0.457	0.269	0.057	0.053	1291	1807	B41868R6477M***
1000	18 ×35	0.331	0.126	0.041	0.039	1861	2605	B41868W6108M***
1200	18 × 40	0.233	0.105	0.029	0.028	2325	3254	B41868W6128M***

Composition of ordering code

*** = Version


- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for $\emptyset \ge 10 \text{ mm}$)
- 002 = for cut leads, bulk (for $\emptyset \ge 10 \text{ mm}$)
- 003 = for crimped leads, blister (for $\emptyset \ge 16$ mm)
- 004 = for J leads, blister (from $d \times I = 10 \times 12.5$ mm to 18×35 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5 mm (from $d \times I = 10 \times 12.5$ mm to 12.5×25 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (from d × l = 16 × 20 mm to 16 × 31.5 mm)
- 012 = for bent 90° leads, blister (for \emptyset 16 and 18 mm)



Useful life

depending on ambient temperature T_A under ripple current operating conditions¹⁾

Frequency factor of permissible ripple current IAC versus frequency f

 Refer to chapter "General technical information, 5.3 Calculation of useful life" for an explanation on how to interpret the useful life graphs.

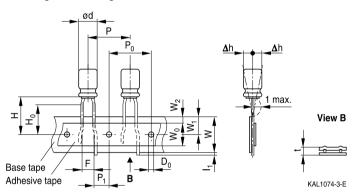
Very high temperature capability - 150 °C

Taping, packing and lead configurations

Taping

Single-ended capacitors are available taped in Ammo pack from diameter 5 to 18 mm as follows:

Lead spacing F = 2.5 mm (\emptyset d = 5 ... 6.3 mm)


Lead spacing F = 3.5 mm (\emptyset d = 8 mm)

Lead spacing F = 5.0 mm (\emptyset d = 5 ... 12.5 mm)

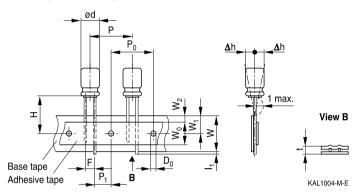
Lead spacing F = 7.5 mm (\emptyset d = 16 ... 18 mm).

Lead spacing 2.5 mm (Ø d = 5 ... 6.3 mm)

Last 3 digits of ordering code: 007

Dimensions in mm

Ød	F	Н	W	W_{0}	W_1	W_2	H₀	Р	P ₀	P ₁	I ₁	t	Δh	D_0
5 6.3	2.5	18.5	18.0	5.5	9.0	1.5	16.0	12.7	12.7	5.1	1.0	0.7	1.0	4.0
Toler- ance	+0.8 -02	±0.75	±0.5	min.	±0.5	max.	±0.5	±1.0	±0.2	±0.5	max.	±0.2	max.	±0.2

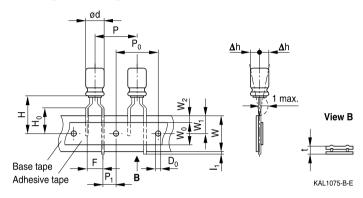


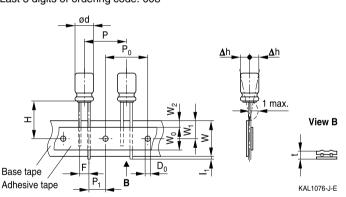
Very high temperature capability - 150 °C

Lead spacing 3.5 mm (\emptyset d = 8 mm)

Last 3 digits of ordering code: 006

Dimensions in mm


$\varnothing d$	F	Н	W	W ₀	W_1	W_2	Р	P ₀	P ₁	I_1	t	Δh	D ₀
8	3.5	18.5	18.0	12.5	9.0	1.5	12.7	12.7	4.6	1.0	0.7	1.0	4.0
Toler- ance	+0.8 -02	1.0	±0.5	min.	±0.5	max.	±1.0	±0.2	±0.5	max.	±0.2	max.	±0.2


Very high temperature capability - 150 °C

Lead spacing 5.0 mm (\emptyset d = 5 ... 8 mm)

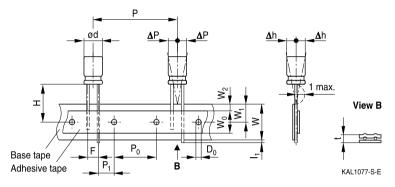
Last 3 digits of ordering code: 008

Lead spacing 5.0 mm (\emptyset d = 10 ... 12.5 mm) Last 3 digits of ordering code: 008

Dimensions in mm

\emptyset d	F	Н	W	W_0	W_1	W_2	H _o	Р	P ₀	P ₁	l ₁	t	Δh	D ₀
5	5.0	18.5	18.0	55	9.0	1.5	16.0	10.7	107	3.85	1.0	0.7	1.0	4.0
6.3	5.0	10.0	10.0	5.5	9.0	1.5	10.0	12.7	12.7	3.00	1.0	0.7	1.0	4.0
8		20.0					16.0	12.7	12.7	3.85				
10	5.0	19.0	18.0	12.5	9.0	1.5	-	12.7	12.7	3.85	1.0	0.7	1.0	4.0
12.5		19.0					_	15.0	15.0	5.0				
Toler- ance	+0.8 -02	±0.75	±0.5	min.	±0.5	max.	±0.5	±1.0	±0.2	±0.5	max.	±0.2	max.	±0.2

Please read *Cautions and warnings* and *Important notes* at the end of this document.



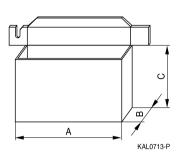
Very high temperature capability - 150 °C

Lead spacing 7.5 mm (\emptyset d = 16 ...18 mm)

Last 3 digits of ordering code: 009

Dimensions in mm

arnothing d	F	Н	W	W_{0}	W_1	W_2	Р	P ₀	P ₁	I_1	t	ΔP	Δh	D_0
16 18 ^{*)}	7.5	18.5	10.0	10.5	0.0	1.5	20.0	15.0	3.75	10	0.7	0	0	4.0
18 ^{*)}	7.5	10.5	10.0	12.5	9.0	1.5	30.0	15.0	3.75	1.0	0.7	0	0	4.0
Toler-	±0.8	-0.5	+0.5	min.	+0.5	may	+1.0	+0.2	±0.5	may	+0.2	+1.0	+1.0	+0.2
ance	±0.0	-0.5 +0.75	±0.5		10.5	max.	1.0	±0.2	10.0	max.	±0.2	±1.0	±1.0	±0.2

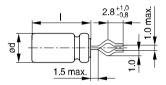

*) Available only for case dimensions 18 \times 20, 18 \times 25 and 18 \times 31.5 mm

B41868

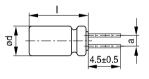
Packing units and box dimensions

Ammo pack

Case size	Dimer	isions (m	າm)	Packing
d imes I				units
mm	A _{max}	B_{max}	C_{max}	pcs.
5×11	345	55	240	2000
6.3 × 11	345	55	290	2000
8×11.5	345	55	240	1000
10 × 12.5	345	55	280	750
10 × 16	345	60	200	500
10×20	345	60	200	500
12.5 × 20	345	65	280	500
12.5 × 25	345	65	280	500
12.5 imes 25	345	65	280	500
12.5 imes 30	345	65	275	500
16×20	315	65	275	300
16×25	315	65	275	300
16 imes 31.5	315	65	275	300
18×20	315	65	275	250
18×25	315	65	275	250
18×31.5	315	65	275	250

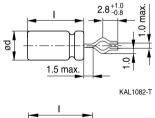

Kinked or cut leads

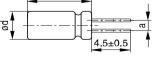
Single-ended capacitors are available with kinked or cut leads. Other lead configurations also available upon request.


Kinked leads

Last 3 digits of ordering code: 001

With stand-off rubber seal

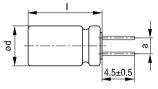




With flat rubber seal

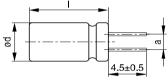
KAL1084-A

Case size	Dimensions (mm)
$d \times I (mm)$	a ±0.5
10×20	5.0
12.5 × 20	5.0
12.5 imes 25	5.0
12.5 × 30	5.0
12.5 imes 35	5.0
12.5 × 40	5.0
16×20	7.5
16×25	7.5
16×31.5	7.5
18×20	7.5
18×25	7.5
18×31.5	7.5
18 × 35	7.5
18×40	7.5
20×20	10.0
20 × 25	10.0
20×40	10.0
22 × 30	10.0
22 × 35	10.0
22×40	10.0



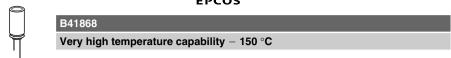
B41868

Cut leads


Last 3 digits of ordering code: 002

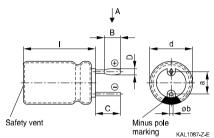
With stand-off rubber seal

KAL1085-

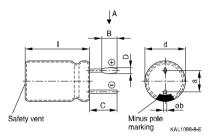

With flat rubber seal

KAL1086-R

Case size	Dimensions (mm)
$d \times I (mm)$	a ±0.5
10 × 12.5	5.0
10 × 16	5.0
10×20	5.0
12.5 × 20	5.0
12.5 × 25	5.0
12.5 × 30	5.0
12.5 × 35	5.0
12.5 × 40	5.0
16×20	7.5
16 × 25	7.5
16 × 31.5	7.5
18×20	7.5
18×25	7.5
18×31.5	7.5
18 × 35	7.5
18×40	7.5
20×20	10.0
20 × 25	10.0
20×40	10.0


PAPR leads (Protection Against Polarity Reversal)

These lead configurations ensure correct placement of the capacitor on the PCB with regard to polarity. PAPR leads are available for diameters from 10 mm up to 20 mm. There are three configurations available: Crimped leads, J leads, bent 90° leads

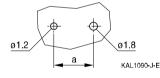

Crimped leads

Last 3 digits of ordering code: 003

With stand-off rubber seal

With flat rubber seal

Suggestion for PCB hole diameter


ø1.0

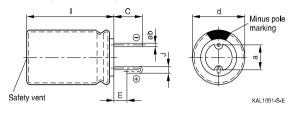
Suggestion for PCB hole diameter, wire Ø0.8 mm

а

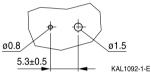
Suggestion for PCB hole diameter, wire ø1.0 mm

Case size	Dimensio	Dimensions (mm)							
$d \times I$ (mm)	B ±0.2	C ±0.5	D ±0.1	E ±0.1	a ±0.5	Øb			
16×20	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05			
16×25	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05			
16×31.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05			
18×20	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1			
18×25	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1			
18×31.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1			
18×35	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1			
18×40	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1			
20×20	1.5	3.0	1.6	0.3	10.0	1.0 ±0.1			
20 × 25	1.5	3.0	1.6	0.3	10.0	1.0 ±0.1			
20×40	1.5	3.0	1.6	0.3	10.0	1.0 ±0.1			

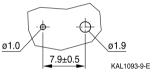
ø1.5


KAL1089-G-E

Very high temperature capability - 150 °C

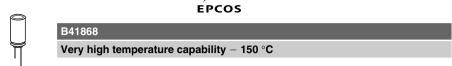

J leads

Last 3 digits of ordering code: 004

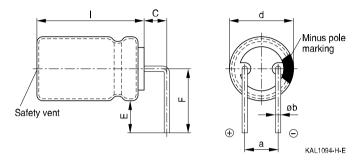


Suggestion for PCB hole diameter

Suggestion for PCB hole diameter, wire $\emptyset 0.6 \text{ mm}$



Suggestion for PCB hole diameter, wire $\emptyset 0.8 \text{ mm}$


Case size	Dimensions (mm)							
$d \times I$ (mm)	C ±0.5	E ±0.5	J ±0.2	a ±0.5	Øb			
10×12.5	3.2	0.7	1.2	5.0	0.6 ±0.05			
10×16	3.2	0.7	1.2	5.0	0.6 ±0.05			
10×20	3.2	0.7	1.2	5.0	0.6 ±0.05			
12.5 × 20	3.2	0.7	1.2	5.0	0.6 ±0.05			
12.5 × 25	3.2	0.7	1.2	5.0	0.6 ±0.05			
16×20	3.5	0.7	1.6	7.5	0.8 ±0.05			
16×25	3.5	0.7	1.6	7.5	0.8 ±0.05			
16×31.5	3.5	0.7	1.6	7.5	0.8 ±0.05			
18×20	3.5	0.7	1.6	7.5	0.8 ±0.1			
18×25	3.5	0.7	1.6	7.5	0.8 ±0.1			
18×31.5	3.5	0.7	1.6	7.5	0.8 ±0.1			
18 × 35	3.5	0.7	1.6	7.5	0.8 ±0.1			

Bent 90° leads for horizontal mounting pinning

Last 3 digits of ordering code: 012

Case size	Dimension	Dimensions (mm)							
$d \times I$ (mm)	C ±0.5	E ±0.5	F ±0.5	a ±0.5	Øb				
16×20	4.0	4.0	12.0	7.5	0.8 ±0.05				
16 × 25	4.0	4.0	12.0	7.5	0.8 ±0.05				
16×31.5	4.0	4.0	12.0	7.5	0.8 ±0.05				
18×20	4.0	4.0	13.0	7.5	0.8 ±0.1				
18×25	4.0	4.0	13.0	7.5	0.8 ±0.1				
18×31.5	4.0	4.0	13.0	7.5	0.8 ±0.1				
18 imes 35	4.0	4.0	13.0	7.5	0.8 ±0.1				
18×40	4.0	4.0	13.0	7.5	0.8 ±0.1				

Bent leads for diameter 12.5 mm available upon request.

B41868

Overview of packing units and code numbers for case sizes $5 \times 11 \dots 16 \times 31.5$

								PAPR	
Case size	Stan-	Taped	l,		Kinked	Cut	Crimped	J leads	Bent 90°
d × I	dard,	Ammo	pack		leads,	leads,	leads		leads,
	bulk				bulk	bulk			blister
mm	pcs.	pcs.			pcs.	pcs.	pcs.	pcs.	pcs.
5×11	2000	2000			—	-	-	—	
6.3×11	2500	2000			-	-	-	_	
8×11.5	1000	1000			-	-	-	-	
10 × 12.5	1000	750	750			1000	-	675	
10×16	100	500	500			1000	-	675	
10×20	500	500	500			500	-	500	
12.5 × 20	350	500			350	350	-	300	1)
12.5 × 25	250	500	500			500	-	225	1)
12.5 × 30	200	500	500			175	-	180	1)
12.5 × 35	175	-	-			175	-	150	1)
12.5 × 40	175	-	-			175	-	150	1)
16×20	250	300	300			200	200	200	120
16×25	250	300			200	200	200	200	120
16×31.5	200	300			250	250	344	344	120
The last three	000	Code	F (mm)	d (mm)	001	002	003	004	012
digits of the		006	3.5	8					
complete		007	2.5	56.3					
ordering code		008	5	512.5					
state the lead configuration		009	7.5	1618					

Very high temperature capability - 150 °C

Overview of packing units and code numbers for case sizes 18×20 ... 25×40

							PAPR		
Case size	Stan-	Tapec	l,		Kinked	Cut	Crimped	J leads	Bent 90°
$d \times I$	dard,	Ammo	pack		leads,	leads,	leads		leads,
	bulk				bulk	bulk			blister
mm	pcs.	pcs.			pcs.	pcs.	pcs.	pcs.	pcs.
18×20	175	250			175	175	200	200	120
18×25	150	250			150	150	200	200	120
18×31.5	100	250			100	100	150	150	120
18×35	100	-			100	100	150	150	150
18×40	125	-			100	100	120	—	72
20×20	125	-			125	125	200	-	-
20 × 25	125	-			125	125	200	-	-
20 × 30	100	-			100	100	120	-	-
20 × 35	100	-			100	100	120	-	-
20×40	100	-			100	100	120	-	-
22×30	80	-			100	100	-	-	-
22 × 35	80	-			100	100	-	-	-
22×40	80	-			100	100	-	-	-
25×40	40	-			100	-	-	-	-
The last three	000	Code	F (mm)	d (mm)	001	002	003	004	012
digits of the		007	2.5	46.3					
complete		800	5	6.312.5					
ordering code		009	7.5	1618					
state the lead									
configuration									

Very high temperature capability - 150 °C

Cautions and warnings

Personal safety

The electrolytes used by EPCOS have not only been optimized with a view to the intended application, but also with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

Furthermore, part of the high-voltage electrolytes used by EPCOS are self-extinguishing. They contain flame-retarding substances which will quickly extinguish any flame that may have been ignited.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes. However, in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no safe substitute materials are currently known. However, the amount of dangerous materials used in our products has been limited to an absolute minimum. Nevertheless, the following rules should be observed when handling Al electrolytic capacitors:

- Any escaping electrolyte should not come into contact with eyes or skin.
- If electrolyte does come into contact with the skin, wash the affected parts immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment.
- Avoid breathing in electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

Very high temperature capability - 150 °C

Product safety

The table below summarize the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Торіс	Safety information	Reference Chapter "General technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"
Reverse voltage	Voltages polarity classes should be prevented by connecting a diode.	3.1.6 "Reverse voltage"
Upper category temperature	Do not exceed the upper category temperatur.	7.2 "Maximum permissible operating temperature"
Maintenance	Make periodic inspections of the capacitors. Before the inspection, make sure that the power supply is turned off and carefully discharge the electricity of the capacitors. Do not apply any mechanical stress to the capacitor terminals.	10 "Maintenance"
Mounting position of screw terminal capacitors	Do not mount the capacitor with the terminals (safety vent) upside down.	11.1. "Mounting positions of capacitors with screw terminals"
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2 Nm M6: 2.5 Nm	11.3 "Mounting torques"
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"

B41868

Торіс	Safety information	Reference Chapter "General technical information"
Soldering, cleaning agents	Do not allow halogenated hydrocarbons to come into contact with aluminum electrolytic capacitors.	11.6 "Cleaning agents"
Passive flammability	Avoid external energy, such as fire or electricity.	8.1 "Passive flammability"
Active flammability	Avoid overload of the capacitors.	8.2 "Active flammability"
		Reference Chapter "Capacitors with screw terminals"
Breakdown strength of insulating sleeves	Do not damage the insulating sleeve, especially when ring clips are used for mounting.	"Screw terminals - accessories"

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of passive electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of a passive electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as "hazardous"). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, EPCOS-JONES, BAOKE, Alu-X, CeraDiode, CSSP, MLSC, PhaseCap, PhaseMod, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMID, SIOV, SIP5D, SIP5K, UltraCap, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.